## Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I



Completed Technology Project (2009 - 2009)

#### **Project Introduction**

While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources typically lack the ultra-narrow (<50 kHz), ultra-stable output spectrum required for use in applications such as Doppler shift measurements of the tropospheric winds. Furthermore, similar sources which operate at 2.0 microns (a preferred wavelength for space-based atmospheric measurements) are simply unavailable. To fill this need, nLight proposes the parallel development of 1.5 and 2.0 micron injection seeding sources based on our well-established, wavelength-scalable, industry-leading InP semiconductor laser design.

#### **Anticipated Benefits**

Potential Non-NASA commercial applications include narrow-linewidth eyesafe pump sources for: 1. Military Infrared countermeasures, eyesafe rangefinders, eysafe 3D LIDAR imaging for surveillance, and unmanned autonomous ground and airborne vehicles 2. Medical Tissue bonding, dentistry Potential NASA commercial applications include: 1. Ultra-narrow linewidth LIDAR injection-seeding sources for Doppler shift measurements of the tropospheric winds. 2. Narrow-linewidth eyesafe pump sources for 3D LIDAR imaging for autonomous precision landing including hazard detection and avoidance

#### **Primary U.S. Work Locations and Key Partners**





Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Anticipated Benefits          | 1 |
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 3 |
| Technology Areas              | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I



Completed Technology Project (2009 - 2009)

| Organizations<br>Performing Work | Role         | Туре     | Location   |
|----------------------------------|--------------|----------|------------|
| Langley Research Center(LaRC)    | Lead         | NASA     | Hampton,   |
|                                  | Organization | Center   | Virginia   |
| nLight Photonics                 | Supporting   | Industry | Vancouver, |
| Corporation                      | Organization |          | Washington |

| Primary U.S. Work Locations |            |
|-----------------------------|------------|
| Virginia                    | Washington |

### Organizational Responsibility

## Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Center / Facility:**

Langley Research Center (LaRC)

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

Carlos Torrez

#### **Project Manager:**

Farzin Amzajerdian

#### **Principal Investigator:**

Paul Leisher



Small Business Innovation Research/Small Business Tech Transfer

# Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I



Completed Technology Project (2009 - 2009)



### **Technology Areas**

#### **Primary:**

- TX08 Sensors and Instruments
  - └ TX08.1 Remote Sensing Instruments/Sensors└ TX08.1.5 Lasers

